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1. Introduction

Many analyses of complex experimental data use Monte Carlo predictions for observables

to adjust theory parameters to observed distributions. Often no mathematical models for

histogram shapes exist, examples being the treatment of instrumental responses or plots of

likelihood and neural network variables. Sometimes one prefers a smooth behavior of the-

oretical distributions, if statistical errors have to be computed from a histogram for fits, or

interpolations between distributions have to be performed. In particle search experiments,

the statistical analysis is sometimes based on the likelihood ratio between a hypothetical

signal distribution and an underlying flat background [1]. A background histogram may

have empty bins, and if one of these contains an observed event, the computed likelihood

ratio becomes infinite.

In this situation, the true distribution has to be estimated from a histogram by av-

eraging out the statistical fluctuations, without detailed a priori knowledge of its correct

shape.

Any acceptable smoothing algorithm should fulfill the following criteria:

• Statistically insignificant fluctuations have to be removed.

• Significant structures in high intensity bins have to be be kept with distortions as

small as possible.
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• Many physical observables like angles or neural network variables have lower and

upper bounds and no events lie outside the histogrammed region. The total rate

is often predicted by the Monte Carlo computation producing the histogram. The

overall normalization of the histogram should then be fixed.

There are many publications on smoothing algorithms. Procedures popular in high

energy physics are spline fits and multiquadric smoothing [2, 3]. In the latter case, centers of

a distribution are searched for where the second differential becomes statistically significant.

The distribution is approximated by basis functions depending on the distance of a point

from its relevant center and a curvature. The algorithm is steered by two parameters

controlling the setting of the statistical sensitivity and the curvatures. Spline fits need

two steering parameters, too, which are the number of knots and the degree of spline

functions.

An alternative method, presented in ref. [4], is the description of the data by Gaus-

sian kernels. The algorithm depends on one parameter only. It uses all data events in-

dividually, generates an interpolating function and is thus free from histogram binning

effects.

In the search experiments mentioned above, the problem of fluctuations in low intensity

background distributions may be a crucial one. A critical comparison of some existing

smoothing algorithms has shown that they gave unsatisfactory results, with the exception

of the Gaussian kernel method [5].

In this work, an alternative procedure fulfilling the above criteria is described: a dif-

fusion algorithm with a bin dependent diffusion constant adjusted to the local intensities.

The method is closely related to the method of Gaussian kernels and the numerical results

are quite similar. The program uses binned histograms as input information and is thus less

ambitious than the Gaussian kernel method in a technical sense. It is, on the other side,

more general than the implementation described in ref. [4], because it contains a second

steering parameter to control the statistical fluctuations after smoothing. It is the aim of

this paper to study the impact of the additional parameter on the systematic errors of the

smoothing algorithm.

The method was introduced for complex Higgs search analyses [7], where experimental

results for several accelerator energies and decay channels had to be combined. In addition,

Monte Carlo predictions had to be made for a set of hypothetical Higgs masses. In total,

many hundreds of mass and likelihood distributions had to be handled. It was the aim

to find a simple equivalent for the Gaussian kernel method, which converts a histogram

directly into a smoothened histogram and avoids the need for many function routines, thus

simplifying code management. Instead, all information on distributions is stored in a data

base.

The code has been developed for one- and two-dimensional distributions. The con-

struction of the algorithm is by far not unique. Three different variants were investigated

in detail and their performance and the systematic errors were compared.
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Figure 1: Initial averaging. The arrows mark two bin positions where vi is evaluated.

2. Smoothing of one-dimensional histograms

2.1 Control of statistical fluctuations

It is assumed that the errors per bin are proportional to
√

ri, where ri is the true intensity.

Any smoothing procedure requires an averaging over a number of bins, neff,i. In an initial

pre-smoothing step, a constant weighting is introduced. The histogram smoothing will

produce a modified set of rates r∗i , and the relative errors become

δr∗i
r∗i

∼
1

√

neff,i · r∗i
(2.1)

As a parameter which controls the residual statistical fluctuations at the histogram

maximum after smoothing, a predefined number of bins, neff,max, could have been intro-

duced. Equivalently, the ratio

F =
neff,max · r∗max

∑nb

k=1 rk
(2.2)

is used throughout this paper. The sum in the denominator extends over all nb bins of the

histogram, so that F is defined as the fraction of the total histogram content to be used in

the averaging process around the maximum.

Additionally, one has to specify the statistical fluctuations at arbitrary histogram bins.

The ansatz taken is a power law as the function of the local rate:

δr∗i
r∗i

=
δr∗max

r∗max

· (
r∗max

r∗i
)κ (2.3)

Both F and κ have to be specified by the user. They have to be chosen in such a way

that those peaks considered as significant are not averaged away by the pre-smoothing.

The exponent κ lies between the boundaries κ = 1/2 and κ = 0. In the first case, the
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error (2.1) follows the original square root law and the number of bins neff,i is the same

everywhere in the histogram. The smoothing corresponds to an overlay of some histograms

with a coarser binning, shifted against each other. The other limit realizes the extreme

case that the relative error is the same in all histogram bins after smoothing, which makes

neff,i strongly bin dependent. The systematic errors are smallest in the first and largest

in the second case.

A compromise between these extremes, suitable as a default, is κ = 1/4. It should

be noted that the implementation of the Gaussian kernel method of ref. [4] always uses

a kernel width proportional to 1/
√

r∗i as proposed in reference [6], which is equivalent

to this κ value. Throughout this paper, the algorithms based on κ = 1/4 and κ = 0 are

referred to as weak and strong smoothing, respectively.

Equation (2.3) gives, together with the error (2.1) and the definition (2.2):

neff,i · r∗i
neff,max · r∗max

= (
r∗i

r∗max

)2κ (2.4)

neff,i · r∗i = F · (
nb
∑

k=1

rk) · (
r∗i

r∗max

)2κ (2.5)

The real bin contents are unknown. An estimate vi for it is extracted from the histogram

with the definition

vi =

∑min(i+j,nb)
k=max(i−j,1) hk

n∗
eff,i

(2.6)

with the number of bins

n∗
eff,i = min(i + j, nb) − max(i − j,+1) + 1 , (2.7)

where j is an integer number.

To get compatibility of n∗
eff,i with eq. (2.5), the free parameter j is set to the lowest

value which fulfills the inequality

min(i+j,nb)
∑

k=max(i−j,1)

hk ≥ (F ·
n∗

eff,i

2j + 1
) · (

nb
∑

1

hk) · (
vi

vmax
)2κ (2.8)

with vi > 0. This condition, together with eq. (2.6), always gives a unique solution.

Normally, n∗
eff,i = 2j + 1 bins contribute to the sum on the left hand side. Close to

the histogram boundaries, the counting can be truncated at one side and the factor F is

reduced automatically. A larger statistical rest fluctuation is tolerated near the boundaries

with the consequence that vi is a better approximation for the true rate.

The maximum rate vmax does not depend on κ and has to be evaluated first. The

construction is illustrated in figure 1 for κ = 0. The spectrum vi cannot be taken as the

final result. Its disadvantage is the use of an equal weighting for all bins. Also the number

of events is not conserved. A better performance can be reached with a Gaussian weight

profile.
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2.2 The algorithm

Gaussian smearing can be approximated by a stepwise information exchange between neigh-

boring bins of the histogram. If hi−1, hi and hi+1 are the contents of 3 adjacent bins, the

intensity in bin i will be modified according to

h∗
i = hi · (1 − fi,i−1 − fi,i+1) + hi−1 · fi,i−1 + hi+1 · fi,i+1 . (2.9)

The fi,i±1 are exchange coefficients to be defined later.

At the histogram boundaries one sets, for the non-existing bins 0 and nb + 1,

f0,1 = 0 fnb,nb+1 = 0 . (2.10)

A natural upper limit for the fi,k coefficients is obtained for the case that the content of a

bin is equally distributed over 3 bins:

max(fi,k) = fmax =
1

3
. (2.11)

The mixing process (2.9) is done in parallel for all bins and it is repeated until a certain

number of iterations N is reached. The factors fik are adjusted to the local rates in such

a way that the number of steps N is universal for a histogram.

For one selected histogram bin i and fixed f , the distribution obtained after N itera-

tions quickly approaches a Gaussian distribution with the variance

σ2
i = 2 · f · N , (2.12)

where σi is measured in number of histogram bins. To get consistency with the parame-

terization of the preceding subsection, the variance (2.12) is made equal to the variance of

the neff,i bins for neff,i À 1:

σi =
neff,i√

12
. (2.13)

The largest value of f is assigned to the bin with the lowest intensity. Equations (2.13), (2.12)

and (2.5) are then sufficient to compute the number of steps, with r∗i replaced by vi:

N =
1

24 · fmax
· F 2 · (

nb
∑

k=1

hk)
2 · (

vmin

vmax
)4κ ·

1

v2
min

(2.14)

For the exchange coefficients one gets the proportionality

f ∼ vi
4κ−2 (2.15)

In the application, the f factors have to be assigned to pairs of adjacent bins, which leads

to the ansatz

fi,i±1 = fmax · (
2 · vmin

vi + vi±1
)2−4κ . (2.16)

The request for a minimal fraction F avoids divergencies in the last equation.
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The iteration formula (2.9), the exchange coefficients (2.16) and the number of steps (2.14)

define the algorithm for one dimensional smoothing. It depends on the two parameters F

and κ and contains the vi, which are estimates for the unknown true rates ri and were

defined with the initial averaging process (2.8), (2.6).

It has been assumed implicitly that this auxiliary spectrum is generated with the same

parameters F and κ as used in the main analysis. In the following, this is called the self

consistent approach. This is not mandatory. As will be shown, the systematic errors can

be reduced a bit, if the vi are computed with a smaller κ value, at the price of somewhat

larger statistical rest fluctuations at low rates. Examples were studied with κ = 0 for

the pre-smoothing and κ = 1/4 for the main analysis with the same parameter F ; this

parameter combination is called the ’mixed approach’.

2.3 Performance

The differences in performance between the algorithm described here and available standard

routines [2] are illustrated in figure 2. The underlying model for the Monte Carlo data

set consists of two Gaussians with a peak rate of 100 events per bin and a width of 4 bins,

superimposed on a constant background of 5 events per bin. The upper right picture gives

the result of the diffusion algorithm with F = 0.15. Because the input histogram contains

2000 entries, this corresponds to a smearing over 3 bins and a residual statistical fluctuation

of (1/
√

300)=5.8% at the maximum. The input data have a statistical fluctuation of more

than one standard deviation at the central peak; a part of this structure is left over after

smoothing. The background level is well reproduced with some remaining structures,

which are clearly correlated to statistical fluctuations in the input data. With the default

parameter κ = 0.25, statistical oscillations with amplitudes of the order of 4
√

100/5 ·5.8%≈
12% and correlation lengths of 6 bins are expected, in agreement with the figure. A slight

broadening of the Gaussian peaks is visible. The pedestal can be made more flat and the

structure at the top can be removed with F = 0.20, at the price of a slightly increased peak

broadening. The lower left curve shows the result from the multiquadric approach. The

fluctuations in the pedestal region are larger and its correlations to the input data are not

always obvious. The shapes of the main peaks are somewhat non-parabolic in logarithmic

representation. An alternative method of smoothing from ref. [2] is the so called 353QH

algorithm. As shown in the lower right picture, the two peaks are well reproduced, but

the method creates, on the other hand, sudden jumps in the low intensity region. The

spline smoothing, not shown at all, needs special tuning to reproduce the peak width and

introduces then unacceptable oscillations in the pedestal region, too. Instabilities of this

type are the reason for the problems in the application mentioned in the introduction.

The comparison shows the advantage of the diffusion algorithm: The residual statistical

fluctuations can be controlled directly with the parameters F and κ over a dynamic range

of more than one order of magnitude. A disadvantage is an unwanted, but unavoidable

feature that major structures are widened. The systematic errors are proportional to F 2.

They may become significant, if the algorithm is applied to a histogram with low statistics

and a large dynamic range; especially if the intensity goes to zero. In this situation there

is a conflict between the requirements of smoothness and the correct reproduction of the
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Figure 2: it Smoothing of a data set with different algorithms. Upper left: input data, upper

right: this work, lower part: multiquadric procedure (left) and 353QH algorithm (right) of ref. [2]

with default parameters.

underlying distribution: A smooth result requires a large F value, to be estimated from

the allowed residual statistical fluctuations; a limit on systematic errors will set, however,

upper bounds on F , as explained in the next section.

2.4 Systematic errors

The diffusion algorithm does not converge in a statistical sense: If the smoothing is repeated

many times with fluctuating input histograms, the averaged smoothened histogram is not

identical with the real distribution. Only the expectation value of the sum of histogram
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entries is correctly reproduced, because the sum of entries is kept by construction. The

systematic errors depend, apart from statistical second order effects from pre-smoothing,

on the parameters F and κ only and not on the number of histogram entries.

Peak broadening is most easily estimated for strong smoothing. Let np be the intensity

of a Gaussian peak, superimposed on a constant background with b events per bin, and σp

the peak width. The rate at half maximum is vp = b + np/(2
√

2π · σp). The variance of

peak broadening is, according to eqs. (2.12), (2.14) and (2.16),

2 · f · N ≈ 2 · F 2 ·
n2 · σ2

p

(np + 2
√

2π · b · σp)2
. (2.17)

If the background is negligible, the broadening
√

2fN is proportional to the width σp,

irrespective of the binning. The effect will be small as long as F ¿ np/n. The constraint

is a bit less severe for weak smoothing, where an additional factor
√

vp/
√

vmax < 1 appears

in the broadening. The distortions are at the % level, if F < 0.1 . . . 0.2 · np/n. If the rate

in the peak region is dominated by background, the broadening becomes independent of

the width; little narrow structures will always be removed.

There are two additional imperfections of the algorithm: Because the width of smearing

σi is largest at lowest intensities, the smoothing creates peak tails, in addition to the mean

broadening already discussed. Furthermore, condition (2.10) introduces ’event reflections’

at both boundaries of the histogram. The algorithm has therefore the tendency to move

events from the interior of the histogram to a boundary or vice versa, depending on the

sign of the end slope of the distribution. As a result, the reconstructed end slopes are

too small. In case of very small intensities this can mimic pedestals, which are, however,

local accumulations of events with the compensating deficits spread over a wider histogram

region.

To get upper limits for systematic errors, these effects were studied in detail for a

Gaussian and a linear distribution. The numerical examples are constructed as worst

case scenarios for the diffusion algorithm: The intensities per bin were less than 15 and

the largest fractions F were 0.2. The true intensities were set to zero at the histogram

boundaries, where the tail and reflection effects accumulate. Especially, the dependence of

the errors on the κ parameter was investigated by changing κ from its default value to the

lower limit κ = 0, which gives the largest systematic errors.

Normal distribution As an example, figure 3 gives the result obtained with an input

data set generated by applying statistical fluctuations to a Gaussian function with a width

of 10 histogram bins (upper left picture).

A dip due to a large statistical fluctuation at the maximum of the distribution survives

after smoothing. The differences between the two weak smoothing algorithms are marginal

for the special example and only the mixed approach results are shown in figure 3. To

study the systematic errors quantitatively, 10000 Monte Carlo distributions, each consisting

of 1000 events, were generated from the Gaussian function in figure 3. Figure 4 shows the

systematic differences between the averaged smoothened histograms hmean and the real

distribution htrue. The differences are normalized to the true maximum max(htrue). The
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Figure 3: Smoothing of a Gaussian distribution with κ = 0.25 and different values of the parameter

F . The total number of entries in the histogram is 1000, the bin-to-bin fluctuations follow the

polynomial distribution.

tails of the true distribution are overlayed for comparison. For large fractions F , significant

pedestals appear at the histogram boundaries, especially for strong smoothing.

Figure 5 gives information about the cumulated distributions. Again the averaged

reconstructed histograms are compared with the original Gaussian function. A formal pull

p = p(j) is defined for every bin j by relating the summed histogram entries to a Gaussian

integral:

∑j
i=1 hmean,i

∑nb

i=1 hmean,i
=

∫ p(j)

−∞

1√
2π

exp(−ξ2/2)dξ . (2.18)
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Figure 4: Difference of the mean smoothened histogram hmean from an original Gaussian function.

The number of histogram bins per standard deviation is µ = 10. (a): strong smoothing, (b) weak

smoothing, self consistent approach, (c) weak smoothing, mixed approach. The dots mark the

original function. All function values zi were transformed to a non-linear scale with

± ln(1 ± zi/0.001).

The same procedure is applied to the original Gaussian histogram. Instead of the summed

histogram entries, the equivalent pulls, computed with eq. (2.18), are used to prepare figure

5, with the limiting bin j as running parameter. The pull ratio between the averaged

reconstructed and the true distributions measures the relative local widening due to the

smoothing. This presentation of results depends only weakly on the binning and the number

of histogram entries.

The central parts of the curves are flat, the onsets of major slopes being F dependent. It
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Figure 5: Ratios between mean reconstructed and true pulls of a Gaussian distribution as a

function of the true pull. (a): strong smoothing, (b): weak smoothing, self consistent approach,

(c): weak smoothing, mixed approach.

is evident that weak smoothing has a better tail behavior. Comparison of the self consistent

approach with the mixed approach shows, that the former ansatz produces larger tails. The

mixed approach turns out to be the best compromise between the requirements of smooth

results and small systematic errors and is therefore taken as the default.

Linear function A Monte Carlo data set was generated by applying statistical fluctu-

ations to a linear distribution which vanishes at x = 0. The expectation value for the

number of entries in the uppermost bin is 10. The result obtained with weak smoothing is

presented in figure 6. With the parameter F = 0.2 the number of events contributing to the
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Figure 6: Smoothing of a Monte Carlo histogram, generated from a linear function, with κ = 0.25

and different values of the parameter F . The total number of entries in the histogram is 400.

smoothened histogram in the uppermost bin is 80 and the typical amplitude of statistical

oscillations is therefore ≈ 11%.

Figure 7 shows the differences between the mean reconstructed distributions and the

true one, obtained from 50000 Monte Carlo data sets. The differences are normalized to

the true maximum value at the upper boundary.

For any value of F the mixed approach version of weak smoothing gives the lowest

systematic errors, as for the Gaussian case.

Delta function Histograms with only one filled bin contradict the assumption of smooth

variation of the true rate ri with i, which has been implicitly made at the beginning. If a
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Figure 7: Average reconstructions of a straight line as a function of the the parameter F . The

true distribution is taken from figure 6. (a): strong smoothing, (b): weak smoothing, self consistent

approach, (c) weak smoothing, mixed approach.

one bin spike appears, the algorithm produces a tail around the filled bin, which has to be

considered as a systematic error.

Again, the error is largest for strong smoothing. The diffusion causes an intensity loss

in the bin originally filled, which appears as the total tail intensity. If backward diffusion is

neglected, the relative intensity loss is given by 1− (1− 2f)N with the diffusion coefficient

from eq. (2.16):

f =
4

3
·

v2
min

max(vi + vi+1)2
. (2.19)
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Figure 8: Hexagonal binning of 2-dimensional histograms. The parameters w and b measure the

cell sizes and the lengths of common boundary lines of two cells.

For sufficiently small F , no smoothing is done, because eq. (2.14) gives N = 0. If F > 1/nb,

N may become large. For the delta function one gets, with eq. (2.6)

max(vi + vi+1) =
∑

k

hk · (1 +
1

3
) , (2.20)

and with the number of steps from eq. (2.14), the relative tail intensity becomes

1 − (1 − 2f)N ≈ 2Nf =
3

16
F 2 , (2.21)

which is less than 1% up to F = 0.2.

3. Smoothing of two-dimensional histograms

3.1 Hexagonal binning

For geometrical reasons two-dimensional bins have to be triangular, rectangular or hexag-

onal, if all bins are requested to have the same shape and size. Diffusion of a delta-function

leads to a two-dimensional Gaussian. Any binning breaks the rotational symmetry after

diffusion, the smallest periodicity angle in Euclidian geometry being 60 degrees for regular

hexagons. Triangular and rectangular bins have the additional disadvantage of having two

classes of next neighbor bins with common boundary lines or common corner points. A

rectangular region of the variables x, y is therefore divided into basic hexagonal cells. The

positions of the hexagons are shown in figure 8. A weight wik has to be assigned to every

cell, which is proportional to its area. Hexagons in the interior of the histogram have weight

1, the corner cells w = 1/4, the other cells at the x minimum and maximum w = 1/2.

Along the x axis and the parallel upper boundary, every second cell has w = 1/2.

– 14 –
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A hexagonal histogram may be filled directly. Alternatively, a histogram with rectan-

gular cells may be re-binned, computing the fractional overlaps between the rectangular

and hexagonal cells.

As the substitute for the unknown rates rik, an auxiliary histogram vik has to be

evaluated. Fractional intensity counting is done within rings of cells of rising rank ν around

a given hexagon (i, k); the value ν = 1 corresponds to the next neighbors. The maximum

number of cells in a ring is 6ν and the total number of cells up to ring n is

ncell,ikn = 1 + 3 · n · (n + 1) . (3.1)

Cells may lie partly outside the x and y boundaries. The effective number of bins

in the two-dimensional case is the total cell weight

Wikn = wik +

n
∑

ν=1

6ν
∑

m=1

wjl , (3.2)

where

j(i, k, ν,m) and l(i, k, ν,m)

are the indices of the m-th neighbor hexagon. The third argument of the functions j, l is

the rank ν of the neighbors. The averaged intensity of order n is defined as

vi,k =
hi,k +

∑n
ν=1

∑6ν
m=1 hj,l

Wikn
. (3.3)

To fix n, criterion (2.5) has to be fulfilled. One looks for the lowest integer n which gives

hi,k +
n

∑

ν=1

6ν
∑

m=1

hj,l ≥ (F ·
Wikj

ncell,ikn
) · (

∑

i

∑

k

hi,k) · (
vi,k

vmax
)2κ (3.4)

with vik > 0. As for the one-dimensional case, the fraction F is reduced automatically, if

the ring of cells is not fully contained in the allowed (x, y) region.

3.2 The algorithm

A hexagon in the interior of the (x, y) rectangle has 6 next neighbors. The generalization

of the information exchange to two dimensions is

h∗
ik = hik · (1 −

6
∑

m=1

fik,jl ·
1

wik
) +

6
∑

m=1

hjl · fik,jl ·
1

wjl
, (3.5)

where

j(i, k, 1,m) and l(i, k, 1,m)

are the indices of the m-th neighbor hexagon again.
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J
H
E
P
0
8
(
2
0
0
6
)
0
5
6

5 10 15 20
5

10
15

20

.2

.4

.6

.8
1.

1 step
5 10 15 20

5
10

15
20

.2

.4

.6

.8
1.

2 steps

5 10 15 20
5

10
15

20

.2

.4

.6

.8
1.

5 steps
5 10 15 20

5
10

15
20

.2

.4

.6

.8
1.

10 steps

Figure 9: Two-dimensional diffusion of a bin content for some numbers of iterations.

The f coefficients are symmetric in the pairs of indices. The factors wik, wjl take

into account the lower cell areas at the boundaries: the mean histogram contents are

proportional to wik, so that the density and the diffusion rate are proportional to hik/wik.

For the limiting case of shifting 6/7 of a cell content to the next neighbors one has f =

fmax = 1/7, which replaces the value 1/3 for the one-dimensional case. Some distributions,

obtained from a single filled bin after several diffusion steps with f = 1/7, are shown in

figure 9. The hexagonal symmetry and the falling intensity with increasing distance from

the originally filled bin are obvious.

For fixed fik,jl = f the variance of an original delta function becomes, after N diffusion

steps,

σ2
ik ≈ 6 · f · N , (3.6)

measured in numbers of hexagon layers. In analogy to the one-dimensional case, this is

set to the geometric variance of the cell system of rank n. If approximated by an elliptic

region, this variance is

σ2
ik ≈

1

2
· n · (n + 1) , (3.7)

– 16 –



J
H
E
P
0
8
(
2
0
0
6
)
0
5
6

or, with eq. (3.1):

σik ≈
√

1

6
· (ncell,ikn − 1) . (3.8)

Equations (3.8) and (3.6) can be combined with formula (2.5) to compute the number of

diffusion steps:

N =
1

36 · fmax
· F · (

∑

i

∑

k

hi,k) · (
vmin

vmax
)2κ ·

1

vmin
. (3.9)

The exchange coefficients are proportional to

f ∼ v2κ−1
i,k , (3.10)

which leads to the ansatz

fik,jl = fmax · b(ik, jl) · (
2 · vmin

vi,k + vj,l
)1−2κ . (3.11)

The factor b is another complication introduced by different cell sizes: the exchange rate

between two neighbor cells is proportional to the length of their common boundary line,

which is 1/2 of the usual hexagon side length for a part of the cells at the histogram

boundaries (see figure 8). In these exceptional cases one has b = 1/2 instead of the normal

value b = 1.

The relations ( 3.3), (3.4), (3.11), (3.5) and (3.9) define the two-dimensional smoothing

algorithm. From figure 8 one might get the impression that the procedure is based on

Euclidian geometry. Actually this is not the case. For an infinitesimally fine binning, a

rescaling of the x coordinate to x · ξ changes the histogram function from h to h/ξ and the

number of bins has to be multiplied with ξ. According to eq. (3.11) the diffusion constants

are invariant. The iteration formula ( 3.5) gives then a rescaling of h∗ with the factor 1/ξ.

This internally consistent result is important, because in most physical applications the

dimensions of the variables are different and a geometrical interpretation of the formalism

is impossible. The number of steps N is modified, because it is proportional to the number

of bins. This happens because now smearing over a different number of bins is needed to

get the same fraction F of accumulated events.

The systematic errors in the two-dimensional case can depend on the direction of the

diffusion. To keep this effect small, the widths of structures, measured in number of bins,

should not differ very much in the x and y directions and the binning has to be chosen by

the user accordingly.

The definition of the auxiliary spectrum vik is ambiguous. In analogy to the one-

dimensional case, a self consistent approach can be introduced by using the same κ value

in the pre-smoothing and the main analysis. Alternatively, a mixed approach can be

constructed by using κ = 0 in the pre-smoothing step.
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Figure 10: Two-dimensional histogram

with 2000 Monte Carlo entries, generated

from a rotational invariant Gaussian function

with a width of 5 bins.

Figure 11: Smoothened histogram com-

puted from the data of figure 10 with F =

0.05. Weak smoothing, mixed approach.

3.3 Implementation

The hexagonal histogram structure does not introduce much logistic overhead in an ap-

plication program. The necessary tools exist and the 2-dimensional smoothing algorithm

is very easy to use. There is a function to address a 2-dimensional array representing the

hexagonal histogram, if the point coordinates are given. It is therefore trivial to fill a

hexagonal histogram. It is possible to do a linear interpolation to an arbitrary point in the

smoothened hexagonal histogram. As an interface to graphic representations, a routine

exists which creates the graphics primitives necessary to draw hexagonal lego plots. An

existing histogram with rectangular bins can be converted into the hexagonal format with

a re-binning routine to allow smoothing. It is also possible to transform a histogram with

hexagonal bins into a normal one. All technical details about pre-smoothing, weighting

and iterations are hidden in the smoothing routines and a user has to call one interface

routine only [8].

3.4 Systematic errors

All qualitative remarks made in section 2.4 apply here, too. The estimate of peak broaden-

ing is somewhat different. Repetition of the arguments of section 2.4 for strong smoothing

with eqs. (3.9) and (3.11) gives

6 · f · N ≈ 2 · F ·
n

np + 4π · σ2
p · b

· σ2
p . (3.12)

Here, the fraction F enters linearly and not quadratically. The condition on the smallness

of F is more restrictive in two dimensions; F should be ≤ 0.05 · np/n.
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Figure 12: Deviation of the averaged smoothened 2-dimensional histograms hmean from an original

Gaussian function with an intensity of 2000 events and a variance of 10 bins. The differences are

normalized to the true maximum. The results are shown for a band through the center parallel to

the x axis, 10 bins wide. (a) strong smoothing, (b) weak smoothing, self consistent approach, (c)

weak smoothing, mixed approach. Non-linear ordinate scale as in figure 4.

Gaussian function The study follows closely section 2.4. A Monte Carlo data set based

on a 2-dimensional Gaussian is shown in figure 10, and one example for smoothing is given

in figure 11. After smoothing one expects ≈ 1/F = 20 statistical wiggles, superimposed

on the Gaussian, which is indeed the case. They are all correlated to fluctuations in the

input data set.

Cuts through averaged smoothened histograms, obtained with 10000 Monte Carlo

data sets, each containing 2000 events, are presented in figure 12. To select the bands,
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Figure 13: Differences between the mean reconstructed and true pulls ptrue for a 2-dimensional

Gaussian distribution as a function of the true pull. The Monte Carlo samples are the same as

in figure 12. (a): strong smoothing, (b): weak smoothing, self consistent approach, (c): weak

smoothing, mixed approach.

the hexagonal histograms were converted to the rectangular format. To avoid additional

broadening of the distribution due to the rebinning, the number of bins and the variance

were increased by a factor 2 with respect to to figures 10 and 11.

The cumulated averaged histograms were compared with the true Gaussian integrals.

Like in section 2.4, equivalent Gaussian pulls are presented instead of the summed his-
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Figure 14: Two-dimensional histogram

with 2000 Monte Carlo entries, generated

from a linear function with a gradient along

the x, y diagonal and vanishing rate at the

origin.

Figure 15: Smoothened histogram, com-

puted from the data of figure 14 with F =

0.05. Weak smoothing, mixed approach.

togram contents. In two dimensions the pull is computed from

∑

hmean,m,n/wmn≤hmean,i,k/wik
hmean,m,n

∑

m,n hmean,m,n
= 1 −

∫ p(i,k)

0
2ξ exp(−ξ2)dξ

= exp(−p(i, k)2) . (3.13)

The center of the distribution corresponds to p = 0 and p extends to +∞.

The pull ratios, representing the local widening of the distributions, are shown in the

plots 13. Above the true pull ptrue = 4 the distribution is partly truncated by the histogram

boundaries, which gives sometimes rise to kinks, as visible in figure 13. As expected from

the one-dimensional results, weak smoothing with the mixed approach ansatz is superior

concerning the systematic shifts.

Planar function A numerical example is given in figures 14 and 15. The mean popula-

tion density in the input histogram is 5 events per bin and the true maximum bin content

is 10. This example is rather extreme, because the diffusion fills up mainly some corner

bins close to the origin. The different bin weights at the histogram boundaries show up

in figure 15, an effect which can be avoided by plotting hik/wik. Again statistical wiggles,

residuals of the initial polynomial fluctuations, are observed. The most pronounced peak

in the smoothened histogram arises from a data excess in four adjacent bins of the input

at x ≈ 9, y ≈ 19.

Differences between the mean reconstructed and the true distributions are shown in

figure 16. To construct cuts parallel to the coordinate axes, the smoothened histograms
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Figure 16: Deviation of the averaged smoothened histograms hmean from the true 2-dimensional

linear function of figure 14, normalized to the true maximum. The number of Monte Carlo data

sets is 10000. Full lines: F = 0.01, dashed lines: F = 0.02, dash-dotted lines: F = 0.05.

were converted to the rectangular format. The rebinning introduces no extra systematic

errors for a linear function and the true distribution and the binning are identical to that

of figure 14. The reconstruction shows an event excess of the order of F at the origin

x = y = 0 and a smaller excess at the coordinate axes. Along the parallel lines at y = 20

and x = 20 the reconstructed intensity is too low, the transition from the excess to the

deficit appearing at the corner points.

Delta function In two dimensions, one starts with one filled hexagon as input. The
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computation equivalent to section 2.4 gives with eq. (3.11) and (3.3)

f =
2

7
·

vmin

max(vik + vjl)
(3.14)

max(vik + vjl) =
∑

k

hk · (1 +
1

7
) . (3.15)

The tail intensity is

1 − (1 − 6f)N ≈ 6 · N · f =
7

24
F . (3.16)

4. Conclusions

A diffusion like algorithm has been investigated for smoothing one- and two-dimensional

histograms. Its two steering parameters F and κ are simply related to the statistical

fluctuations after smoothing; they determine the overall size of the fluctuations and their

dependence on the local rate.

The systematic errors depend on the steering parameters; they were evaluated for

simple prototypes of distributions in detail. Any structure to be investigated should extend

over several bins. The relative systematic errors are then insensitive to the binning and

the number of entries in the histogram, if this number is sufficiently large. A compromise

between smoothness of the result and systematic deformations of the distribution has to

be found by the user.

In addition to the choice of steering parameters, there is an ambiguity in defining an

initial approximation for the distribution. It has been found that best overall performance

is obtained, if κ = 0 is used for the pre-smoothing instead of the κ parameter of the main

analysis.

Compared to other available smoothing algorithms like multiquadric smoothing or

spline fits, the diffusion algorithm produces less oscillations in regions of low intensity.

With the default value κ = 1/2 the algorithm works in a similar way as the method

of Gaussian kernels with a kernel width inversely proportional to the square root of the

intensity. By shifting the second parameter κ towards lower values, fluctuations in low

intensity regions can be reduced at the price of increased systematic errors such as peak

broadening and peak tails. By shifting κ in opposite direction, the algorithm reaches finally

the case of a coarser histogram binning, the fluctuations at low intensity become larger and

the systematic errors are reduced. The mixed approach ansatz of weak smoothing, similar

to the Gaussian kernel method, turns out to be a good compromise.
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